Single Pure - Trigonometry 2

1. If sec $\theta = 3$, find the value of sin 2θ .

Harmonic Form

1. Express $2\sin x + 3\cos x$ in the form $R\sin(x + \alpha)$ where $0^{\circ} < \alpha < 90^{\circ}$.	$\sqrt{13}\sin(x+56.3)$
2. Express $\cos x - \sin x$ in the form $R \cos(x + \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.	$\sqrt{2}\cos(x+\frac{\pi}{4})$
3. Express $3\cos 2x + 4\sin 2x$ in the form $R\cos(2x - \alpha)$ where $0^\circ < \alpha < 90^\circ$.	$5\cos(2x-53.1)$
4. Express $\sin \theta + \sqrt{3} \cos \theta$ in the form $R \sin(\theta + \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.	$2\sin(\theta + \frac{\pi}{3})$
5. Express $2\cos n\theta + \frac{1}{2}\sin n\theta$ in the form $R\cos(n\theta - \alpha)$ where $0 < \alpha < \frac{\pi}{2}$.	$\frac{\sqrt{17}}{2}\cos(n\theta - 0.245)$
6. Express $\sqrt{3}\sin 3\theta - \cos 3\theta$ in the form $R\sin(3\theta - \alpha)$ where $0^{\circ} < \alpha < 90^{\circ}$.	
7. Solve $\cos 2\theta + 3\sin 2\theta = -1$ for $0 < \theta < 2\pi$.	

8. By expressing $3\sin x + 2\cos x$ in the form $R\sin(x + \alpha)$, find the maximum value of

$3\sin x + 2\cos x$

and the smallest positive value of x (in degrees) for which this occurs. Max value of $\sqrt{13}$ when $x = 56.3^{\circ}$

9. (a) What is the maximum value of $\frac{8}{5 + 2\cos(\theta - 20)}$?

(b) What is the smallest positive value of θ for which this maximum occurs?

- 10. (From AEA paper.) Without a calculator solve $\sin\left(\frac{\pi}{3} \theta\right) = \frac{\cos\theta}{\sqrt{3}}$, for $0 \le \theta < 2\pi$.
- 11. (From AEA paper.)
 - (a) Use the formula for sin(A B) to show that sin(90 x) = cos x.
 - (b) Solve for $0 < \theta < 360^{\circ}$

$$2\sin(\theta + 17) = \frac{\cos(\theta + 8)}{\cos(\theta + 17)}$$